Nekhodtsev V.A., Lukashov A.A.

 Morphostructural control of underground travertine formation in Moscow. Pp. 137–152.

UDC 551.435.88(470-25)

DOI 10.37724/RSU.2024.85.4.016

 

Abstract. Calthemites (secondary travertine deposits and forms similar to speleothems of karst caves) are usually formed on the inner walls of man-made underground structures in Moscow and other cities. In general, this is a normal process of concrete leaching, but we have found a number of abnormal cases. In such places density of calthemites vary from 5–6 per m2 to 30–40 cm of flowstone rind in 50–200 m long zones. We called these cases as anomalies of calthemites formation. The distribution and volume of these underground formations exceed possible leaching from concrete construction by 100–1 000 times. We spotted 58 zones of calthemites formation in Moscow city. These zones are located mostly in storm sewer within man-made buried valleys and ravines and occupy less than 1,5 % of its length. Anomalies of calthemites formation have sharp borders, which don’t depend on shape, inclination and construction material (bricks or concrete), relief and specific types of industrial waste from the surface. The article contains the map of revealed abnormal zones. Current investigation covers 1 000–1 200 km of underground constructions of all types with depth from 2–3 to 80–85 m evenly distributed throughout Moscow.

We matched all anomalies of calthemites formation with various geologic and geomorphologic characteristics. This article for the first time suggests explanation of mechanisms and spatial distribution of travertine formation within underground structures. All known abnormal cases of calthemites formation match with neotectonic geodynamically active zones and lineaments revealed by other authors. Abnormal travertine formation in Moscow underground infrastructure develops in conditions of CO2 degassing from deeper Jurassic clay and sand. This process takes against the backdrop of the deformation of near-surface Mesozoic and Cenozoic loose ground.

 

Keywords: geodynamically active zones, calthemites, karst, underground rivers, sub-relief, suffusion, travertines.

 

Bibliography

 

  1. Alekseev S. N., Ivanov F. M., Modry S., Schiessl P. Dolgovechnost zhelezobetona v agressivnykh sredakh[Durability of reinforced concrete in aggressive environments]. Moscow, Stroyizdat Publ., 1990, 320 p. (In Russian).
  2. Bolysov S. I., Nekhodtsev V. A. Subrelief and subterrestrial processes as a factor of ecological and geomorphological hazard in cities. Vestnik Ryazanskogo gosudarstvennogo universiteta imeni S. A. Yesenina[Bulletin of the Ryazan State University named for S. A. Yesenin]. 2016, iss. 1 (50), pp. 87–105. (In Russian).
  3. Bolysov S. I., Nekhodtsev V. A. The concept of subrelief-relief of underground cavities. Vestnik Moskovskogo universiteta. Ser. 5, Geografiya[Bulletin of Moscow University. Ser. 5, Geography]. 2020, iss. 2, pp. 13–22. (In Russian).
  4. Voeikova O. A., Makarov V. I., Nesmeyanov S. A. Study of near-surface recent faults of platforms during engineering surveys. Inzhenernaya geologiya, gidrogeologiya, geokriologiya [Geoecology. Engineering geology, hydrogeology, geocryology]. 2007, iss. 3, pp. 267–280. (In Russian).
  5. Geologicheskiy atlas Moskvy: masshtab 1:10,000: v 10 t. [Geological atlas of Moscow: scale 1:10,000: in 10 vols.]. Moscow, State Unitary Enterprise “Mosgorgeotrest”, 2010, 3378 p. (In Russian).
  6. Geomorfologiya gorodskikh territoriy: konstruktivnyye idei [Geomorphology of urban areas: constructive ideas]. Ed. by E. A. Likhacheva. Moscow, Media-PRESS Publ., 2017, pp. 80–93 (A. N. Makkaveev, D. V. Fedorovich), 103–120 (V. A. Nekhodtsev). (In Russian).
  7. Grigoryeva S. V., Makarov V. I. Large-scale mapping of the latest tectonics of platform territories (on the example of Moscow). Inzhenernaya geologiya, gidrogeologiya, geokriologiya [Geoecology. Engineering geology, hydrogeology, geocryology]. 2010, iss. 2, pp. 99–114. (In Russian).
  8. Dashko R. E., Aleksandrova O. Yu., Kotyukov P. V., Shidlovskaya A. V. Features of engineering and geological conditions of St. Petersburg. Razvitiye gorodov i geotekhnicheskoye stroitelstvo[Urban development and geotechnical construction]. 2011, iss. 1, pp. 25–71. (In Russian).
  9. Kochev A. D., Zayants I. L., Mamontov V. V. Otchet po izucheniyu inzhenerno-geologicheskikh usloviy na uchastkakh vozmozhnogo proyavleniya karstovo-suffozionnykh protsessov v zapadnoy chasti Moskvy (zona A): otchet: inv. № 459287 [Report on the study of engineering-geological conditions in areas of possible manifestation of karst-suffusion processes in the western part of Moscow (zone A): report no. 459287]. Moscow, FGBU “Rosgeolfond” Publ., Gidrospetsgeologiya Publ., 1991, 499 p. (In Russian).
  10. Kuzmin Yu. O. Modern geodynamics of fault zones: fault formation in real time. Geodinamika
    i tektonofizika
    [Geodynamics and tectonophysics]. 2014, iss. 5 (2), pp. 401–443. (In Russian).
  11. Lukashov A. A. Biogenic morpholithogenesis within the land. Struktura, dinamika i evolyutsiya prirodnykh geosistem[Structure, dynamics and evolution of natural geosystems]. Moscow, Gorodets Publ., 2004, pp. 69–73. (In Russian).
  12. Makarov V. I., Dorozhko A. L., Makarova N. V., Makeev V. M. Modern geodynamically active zones of platforms. Geoekologiya [Geoecology]. 2007, iss. 2, pp. 99–110. (In Russian).
  13. Maksimovich G. A. Osnovy karstovedeniya [Fundamentals of karstology]. Perm, Perm Publ., 1963, vol. 1: Issues of karst morphology, speleology and karst hydrogeology, 445 p. (In Russian)
  14. Miklyaev P. S., Makarov V. I., Dorozhko A. L. et al.. Radon field of Moscow. Inzhenernaya geologiya, gidrogeologiya, geokriologiya [Geoecology. Engineering geology, hydrogeology, geocryology]. 2013, iss. 2, pp. 172–187. (In Russian).
  15. Miklyaev P. S. Nauchnyye osnovy otsenki potentsialnoy radonoopasnosti platformennykh territoriy [Scientific basis for assessing the potential radon hazard of platform territories]. Dis. … of doctor of geological and mineral sciences: 25.00.36. Moscow, 2015, 307 p. (In Russian).
  16. Mozharova N. V., Kulachkova S. A., Lebed-Sharlevich Ya. I. Emission and absorption of greenhouse gases in Moscow soils. Pochvovedeniye [Soil science]. 2018, iss. 3, pp. 372–384. (In Russian).
  17. Geologiya i gorod [Geology and the city]. Ed. by V. I. Osipov, O. P. Medvedev. Moscow, Moscow ucheb. i cartolithography Publ., 1997, 398 p. (In Russian).
  18. Nekhodtsev V. A. Review of travertinogenesis in underground rivers of Moscow. Speleologiya i spelestologiya [Speleology and spelestology]. 2019, no. 10, pp. 296–303. (In Russian).
  19. Nekhodtsev V. A. Consequences of technogenic burial of rivers in cities (on the example of Moscow). Izvestiya RAN. Ser. geograficheskaya[Bulletin of the Russian Academy of Sciences. Geographical Ser.]. 2021, iss. 2, pp. 238–247. (In Russian).
  20. Nikitin M. Yu. Travertinogenez Izhorskogo plato v golotsene [Travertinogenesis of the Izhora Plateau in the Holocene]. Dis. … of candidate of geography: 25.00.25. St. Petersburg, 2015, 195 p. (In Russian).
  21. Stepanov V. I. Periodicity of crystallization processes in karst caves. Trudy Mineralogicheskogo muzeya AN SSSR.[Transactions of the Mineralogical Museum of the USSR Academy of Sciences]. Moscow, Nauka Publ., 1971, iss. 20, pp. 161–171. (In Russian).
  22. Stepanov V. I. Structures and textures of mineral aggregates formed in the free space of voids. Speleologiya v Rossii [Speleology in Russia]. Moscow, Russian Union of Speleologists Publ., 1998, iss. 1, pp. 70–91. (In Russian).
  23. Fedonkina I. N., Bars A. P., Makarova V. G. et al. Obyasnitelnaya zapiska k skhematicheskoy tektonicheskoy karte territorii g. Moskvy i Lesoparkovogo zashchitnogo poyasa masshtaba 1:50,000: otchet: inv. № 397655[Explanatory note to the schematic tectonic map of the territory of Moscow and the Forest Park Protective Belt at a scale of 1:50,000: report no. 397655]. Moscow, Tsentrgeologiya Publ., MGRE Publ., FGBU “Rosgeolfond” Publ., 1982, 143 p. (In Russian).
  24. Yudakhin F. N., Shchukin Yu. K., Makarov V. I. Glubinnoye stroyeniye i sovremennyye geodinamicheskiye protsessy v litosfere Vostochno-Yevropeyskoy platformy [Deep structure and modern geodynamic processes in the lithosphere of the East European platform]. Yekaterinburg, Ural Branch of the Russian Academy of Sciences Publ., 2003, 298 p. (In Russian).
  25. Selivachova U. M. Model litohenezu tekhnohenno-heolohichnoyi systemy pidzemnykh vyrobok (na prykladi drenazhnykh sporud, m. Kyyiv) [Model of lithogenesis of technogenic-geological system of underground works (on the example of drainage structures in Kyiv)]. Thesis of dis. of … candidate of geology: 04.00.21. Kyiv, 2010, 156 p. (In Ukrainian).
  26. Brogi A., Capezzuoli E. Earthquake impact on fissure-ridge type travertine deposition. Geological Magazine. 2014, iss. 151 (6), pр. 1135–1143.
  27. Brogi A., Capezzuoli E., Alçiçek M. C., Gandin A. Evolution of a fault-controlled fissure-ridge type travertine deposit in the western Anatolia extensional province: the Çukurbağ fissure-ridge (Pamukkale, Turkey). Journal of the Geological Society. 2014, iss. 171, pр. 425–441.
  28. Chen J., Zhang D. D., Wang S. [et al.]. Factors controlling tufa deposition in natural waters at waterfall sites. Sedimentary Geology. 2004, iss. 166, pр. 353–366.
  29. Gradziński M. Factors controlling growth of modern tufa: Results of a field experiment. Geological Society London Special Publications. 2010, iss. 336 (1), pp. 143–191.
  30. Heimann A., Sass E. Travertines in the northern Hula Valley, Israel. Sedimentology. 1989, iss. 36, pp. 95–108.
  31. Hill C. A., Forti P. Cave Minerals of the World. Huntsville, Nat. Speleological Society, 1997, 463 p.
  32. Kuczumow A., Genty D., Chevallier P. [et al.]. X-ray and electron microprobe investigation of the speleothems from Godarville tunnel. X-Ray Spectrometry. 1997, iss. 34, pр. 502–508.
  33. Kuzmin Y. O. Tectonophysics and recent geodynamics. Physics of the Solid Earth. 2009, iss. 45 (11), pр. 973–986.
  34. Kuzmin Y. O. Induced deformations of fault zones. I Physics of the Solid Earth. 2019, iss. 55 (5), pр. 753–765.
  35. Liu Z., He D. Special speleothems in cement-grouting tunnels and their implications of the atmospheric CO2 Environmental Geology. 1998, iss. 35, pр. 258–262.
  36. Macleod G., Hall A. J., Fallick A. E. An applied mineralogical investigation of concrete degradation in a major concrete road bridge. Mineralogical Magazine. 1990, iss. 54, pp. 637–644.
  37. Muir-Wood R., King G. Hydrologic signatures of earthquake strain. Journal of Geophysical Research. 1993, iss. 98, pр. 22035–22068.
  38. Pentecost A. Travertine. Berlin, Heidelberg, NY, Springer-Verlag, 2005, 446 р.
  39. Sanders D., Wertl W., Rott E. Spring-associated limestones of the Eastern Alps: overview of facies, deposystems, minerals, and biota. Facies. 2011, iss. 57, pр. 395–416.
Uncategorized